A RECONFIGURABLE AND FAULT TOLERANT HYPERCUBE ARCHITECI'URE.

Mary Bucknell
Prithviraj Baner jee

Computer S Group
Coordinated Science Laboratory
University of Illinois
1101 W. Springfield Av.
Urbana, IL-61801

(217) 333-6564
>4 g
) [~ 57
L = o
© D
i B
O (o
¥ 2y
2 -
N87-7CLE2

(MSA-CR~181044) A RECCNFIGUERAELE ANI.) PA;ULT
TCLEBRANT HYPERCUBE ARCHITECIUEE (Illinois

inive. il: NI1S
tniv.) 7 p Avail Unclas
00/62 0079358

y This research was supported in part by the National Aeronautics and Space Administration under Contract NASA
NAG 1-613.



1. Introduction -

The use of multiple concurrent processors that work on the same problem is necessary to
obtain large increases in computing speed. The amount of increase depends on the problem, the
processors characteristics, and the way the processors are interconnected. Many interconnection
networks have been developed in the past, ranging from ring connections to full point-to-point con-
nections. The hypercube network, also called the binary k -cube, has been found to be quite useful
for a wide class of problem such as the Discete Fourier Transform and sorting. The hypercube
structure consists of an array of N =2% processors, with each processor connected to its k nearest
neighbors. If the processors are viewed as corners of a cube in k -dimensional space, .the node-
connections or links are the edges of a cube. An advantage of this architecture is that it is a homo-
geneous, modular architecture allowing the possibility of open-ended expansion. Recently, there

has been a lot of interest in actually constructing such cube-connected systems.

The Cosmic Cube [1] system was developed at Caltech and is currently operational. It is a
system which uses 64 small computers in a binary 6-cube network. The Mark II [2] is an improve-
ment on the above system with 128 node modules with each module having its own connection to
the outside world through & host. Inter-module communication is accomplished through ribbon
cables. Both of these systems exhibited good cost/performance ratios. The Mark Il computer [3] is
being designed to allow up to 1024 processors to be configured as a system. Each node processor -
operates at a sustained rate of 2 MIPS and over 2 MFLOPS. Recently, Intel has announced the

iPSC family of concurrent computing systems consisting of 32, 64, or 128 processing nodes [4].

A problem with designing complex systems consisting of such a large number of processors is
that the probability of any one or more processors failing is quite large. It is desirable to build
some fault tolerance into such highly concurrent systems. Fault tolerant network architectures are
therefore emerging as an important area of study [5. 6. 7]. One area that has not been addressed in
the design of hypercube architectures is the fault tolerance of such systems. In this paper, we pro-

pose a reconfigurable and fauit tolerant hypercube architecture.



2. A Reconfigurable Hypercube Architecture

In any reconfigurable connection network it is important that the degree of the nodes does not
increase exponentially. The number of redundant processors should also be minimal. The scheme
that will be presented requires 2% =2 additional processors (for a k —cube) and each node in the sys-

tem will have degree k +1.

As an illustrative example, Fig. 1 shows the reconfigurable 4-cube connection scheme. Proces-
sor nodes numbered O - 15 together with the links denoted by continuous edges denote the normal
4-cube connection network; processors 16-19 and the dotted edges constitute the redundant proces-
sors and links. The original 4-cube network is divided into two groups of eight, namely nodes 0 - 7
(group 1) and nodes 8 - 15 (group 2). Two redundant processors are associated with each group.
Processors 16 and 17 are associated with the first group and processors 18 and 19 are associated
with the second group. Now consider the binary representations of the processor addresses. The
nodes in group 1 with an odd number of ones (odd parity) will have redundant links to auxiliary
processor 16 which also has odd parity. Therefore nodes 1, 2, 4, and 7 have redundant links to pro-
cessor 16 (see Fig. 1). The other nodes in group 1 which have even parity will have redundant
links to processor 17. Similarly in group 2, nodes with even parity addresses will bave redundant
links to processor 18 (which is even parity), and nodes with odd parity addresses will have redun-
dant links to processor 19 (see Fig. 1). In addition to these redundant links there is a redundant
link between auxiliary processors 16 and 18, and a redundant link between auxiliary processors 17

and 19.

This configuration can tolerate single node failures. For instance in the example given above,
let us assume node 4 has failed. The auxiliary processor associated with group 1 which does not
have a link to node 4 is brought in to replace node 4, namely processor 17. The links from proces-
sor 17 to nodes 1, 5, and 6 will be activated. In addition the processor in group 2 which has a link
to node 4 will be replaced by processor 19. As can be seen from Fié. 1, node 12 will be replaced by

processor 19. Therefore the links from processor 19 to nodes 8, 13, and 14 are activated. To com-



plete the reconfiguration the link between processors 17 and 19 would be activated. A similar
method can be used to replace any processor which fails. It can be seen from this example that it is
necessary to bring in two auxiliary processors and to activate 7 redundant links in order to replace

a single faulty node.

3. General Reconfiguration Algorithm

In the paper we will generalize the configuration for any binary k -cube (for k >3). Basically.
we start with the binary k-cube connection as discussed earlier. The number of address bits
needed to address each processor will now be k +1. Partition the nodes into groups of eight (i.e. 0 -
7. 8 - 15, etc.). Each group will have two auxiliary processors associated with it. The addresses of
the auxiliary processors will start with 2%, 2% + 1, etc.. until all processors are numbered. 2* and

2% + 1 are associated with the first group and so on. Redundant links within groups are as follows:

(1) Nodes with even parity addresses should have a redundant link to the associated processor

with even parity address.

(2) Nodes with odd parity addresses should have a redundant link to the associated processor

with odd parity address.

In addition, the auxiliary processors have redundant links to each other. Each auxiliary processor
with an even address (LSB = 0) has a redundant link to all other auxiliary processors with even
address. In a similar way, each auxiliary processor with an odd address (LSB = 1) has a redundant
link to all other auxiliary processors with an odd address. It can be seen that every node in the
system has degree k +1. The auxiliary processors should have four redundant links to their associ-
ated group and & -3 redundant links to other auxiliary processors. The original nodes should have

one redundant link to one of the associated processors within its group.

Formally, a general reconfiguration algorithm for a single node failure is given below. Let us
assume that the processor f fails. (where 0Sf £2%¥—1). The system will be reconfigured as fol-

lows:



(1) If f has even parity, the auxiliary processor with odd parity will replace f . If f has odd

parity the even parity auxiliary processor will replace f . Call this auxiliary processor L .

(2) The links between L and the processors within the group which were neighbors of kX are

activated (three links should be activated).

(3) All links from L to other auxiliary processors should be activated. These auxiliary proces-

sors will replace nodes whose addresses equal k £8§.

(4) Repeat step 2. 22 - 1 times for auxiliary processors whose links to L have been activated.

(let L = each auxiliary processor mentioned in step 3.)

It can be seen that with a single node failure, 2* =3 processors will be replaced by auxiliary proces-

sors.
4. Reliability Analysis

In the paper we will show the improvement in the reliability of the system topology using
our redundant scheme assuming some simple probabilistic models. For the original system to be
operational, all the nodes and links have to be operational. In the redundant system, a fauit in a
single processor Reliability expressions for the nonredundant and redundant systems will be
derived. It will be shown that the redundant system is several times more reliable than the non-

redundant system.

5. Conclusion

The number of redundant processors needed for this scheme is 22, and the degree of the
nodes is k +1. In a binary k cube the degree of the nodes is a limiting factor. Therefore we have
chosen to have the degree of the nodes in the redundant network to just one more than that of the

nonredundant network.

One possible way to organize a higher order system (one with & > 3 ) is to build chips with a
reconfigurable 3—cube structure. Although a layout of this would not be very compact it would be

acceptable. The cubes could be connected together through a multi-stage network to form higher



order k —cubes. This is easily done since the reconfiguration scheme given in this paper is organized

in groups of 3-cubes. Further work is being done to see if it is feasible to organize a k -cube with

2% -3 binary 3-cube chips.

(1]
(2]

[3]
(4]
(5]
(6]
(7]

REFERENCES

C. L. Seitz, “The Cosmic Cube,” in Comm. of the ACM. pp. 22-33, Jan. 1985.

J. Tuazon, J. Peterson, M. Pniel, and D. Leberman, “Caltech/JPL Mark II Hybercube Con-
current Processor,” Proc. 1985 Parallel Processing Conference, pp. 666-673, Aug. 1985.

J. C. Peterson, J. Tuazon, D. Lieberman, and M. Pniel, “The Mark IIl Hypercube-Ensemble
Concurrent Computer,” Proc. 1985 Parallel Processing Conference, pp. 71-73, Aug. 1985.

Intel Scientific Computers, “iPSC: The First Family of Concurrent Supercomputers,” 1985,
product announcement.

1. Koren, “A Reconfigurable and Fault-Tolerant VLSI Multiprocessor Array.” in Proc. 8th
Int. Symp. on Computer Architecture. Minneapolis, Minnesota, pp. 425-442, May 1981.

C. S. Raghavendra. A. Avizienis, and M. Ercegovac, “Fault-Tolerance in Binary Tree Archi-
tectures,” in Proc. 13th Int. Symp. on Fault-Tolerant Computing. pp. 360-364, Jun. 1983.

D. K. Pradhan, “Fault-Tolerant Multiprocessor Link and Bus Network Architectures,” in
IEEE Trans. Computers. pp. 33-45, Jan. 1985.



(&)

=)
=0

P\J ceesccneccssdeccnmerecnsemane=d

N

@)

@:—
=(0)
&
=0

c=
—®
@L

LI L L P L TR Y Y YT L DL

Fio. 1. Reconfisurable 4-cube connection.

| I .

ST T T TR Y TR TR P T NY



